Class 12 Physics Important Questions | Chapter 5 Oscillations

Here we have a given Class 12 Physics Important Questions for Maharashtra Board HSC Examination 2023. Every students want to score good marks in Class 12 Board Exam,but number of students don't know how to score good marks. Dear students, given following questions had been asked in earlier HSC Board Examinations. From this post, you will know which type of questions had been asked in earlier Board Exams and same questions or same type of questions will be asked in your upcoming examination. If you study all these questions, you will get very good marks in your board examinations, Because so many questions from the following given questions will be asked in your upcoming examination.Therefore go through our Class 12 Physics Important Questions which are given in chapter-wise manner and simply try to solve these questions to score very good marks in Physics and obviously, you will! Best wishes to all dear students for your upcoming Maharashtra State Board Exam 2023.

यहां हमारे पास महाराष्ट्र बोर्ड HSC परीक्षा 2023 के लिए कक्षा 12वीं के Physics के महत्वपूर्ण प्रश्न दिए गए हैं। प्रत्येक छात्र कक्षा 12वीं की बोर्ड परीक्षा में अच्छे अंक प्राप्त करना चाहते हैं, लेकिन कई छात्र यह नहीं जानते कि अच्छे अंक कैसे प्राप्त करें। प्रिय छात्रों, नीचे दिए गए प्रश्न पिछले एचएससी बोर्ड परीक्षाओं में पूछे गए थे। इस पोस्ट से आप जानेंगे कि पिछली बोर्ड परीक्षाओं में किस प्रकार के प्रश्न पूछे गए थे और आपकी आगामी परीक्षा में भी इसी प्रकार के प्रश्न पूछे जाएंगे। यदि आप इन सभी प्रश्नों का अध्ययन करते हैं, तो आप अपनी बोर्ड परीक्षाओं में बहुत अच्छे अंक प्राप्त करेंगे, क्योंकि निम्नलिखित दिए गए प्रश्नों में से बहुत सारे प्रश्न आपकी आगामी परीक्षा में पूछे जाएंगे। इसलिए हमारे कक्षा 12 के भौतिकी के महत्वपूर्ण प्रश्नों को देखें जो अध्याय में दिए गए हैं | फिजिक्स में बहुत अच्छे अंक प्राप्त करने के लिए इन प्रश्नों को बुद्धिमान तरीके से हल करने का प्रयास करें और जाहिर है, आप करेंगे! सभी प्रिय छात्रों को आपकी आगामी महाराष्ट्र राज्य बोर्ड परीक्षा 2023 के लिए शुभकामनाएं।



Class 12 Physics Important Questions | Chapter 5 Oscillations

Define an ideal simple pendulum. Show that, under certain conditions, simple pendulum performs linear simple hormonic motion. (March 2013)

A mass M attached to spring oscillates with the period of 2 second. If the mass is increased by 2 kg, the period increases by 1 second. Find the initial mass assuming that Hooke's law is obeyed. (March 2013)

• Derive an expression for the period of motion of a simple pendulum. On which factors does it depend? (Oct 2013)

State an expression for K. E. (kinetic energy) and P. E. (potential energy) at displacement 'x for a particle performing linear S.H.M. Represent them graphically. Find the displacement at which K.E. is equal to P. E. (March 2014)

When the length of a simple pendulum is decreased by 20 cm, the period changes by 10%. Find the original length of the pendulum. (March 2014)

• Define phase of S.H.M. Show variation of displacement, velocity and acceleration with phase for a particle performing linear S.H.M. graphically, when it starts from extreme position. (Oct 2014)

• The maximum velocity of a particle performing linear S.H.M. is 0-16 m/s. If its maximum acceleration is 0.64 m/s, calculate its period. (Oct 2014)


• Obtain an expression for potential energy of a particle performing simple harmonic motion. Hence evaluate the potential energy
a. at mean position and
b. at extreme position. (March 2015)

• A particle in S.H.M. has a period of 2 seconds and amplitude of 10 cm. Calculate the acceleration when it is at 4 cm from its positive extreme position. (March 2015)

Discuss the composition of two S.H.M.'s along the same path having same period. Find the resultant amplitude and initial phase. (Oct 2015)

Define linear S.H.M. Show that S.H.M. is a projection of U.C.M. on any diameter. (March 2016)

A particle performing linear S.H.M. has a period of 6.28 seconds and a pathlength of 20 cm. What is the velocity when its displacement is 6 cm from mean position? (March 2016)

• Define practical simple pendulum. Show that motion of bob of pendulum with small amplitude is linear S.H.M. Hence obtain an expression for its period. What are the factors on which its period depends? (July 2016)

Obtain the differential equation of linear S.H.M.  (March 2017)

• Prove the law of conservation of energy for a particle performing simple harmonic motion. Hence graphically show the variation of kinetic energy and potential energy w.r.t. instantaneous displacement. (March 2017)

• Define linear simple harmonic motion. Assuming the expression for displacement of a particle starting from extreme position, explain graphically the variation of velocity and acceleration w.r.t. time. (July 2017)

• State the differential equation of linear simple harmonic motion. Hence obtain the expression for acceleration, velocity and displacement of a particle performing linear S.H.M. (March 2018)

• A particle performing linear S.H.M. has maximum velocity of 25 cm/s and maximum acceleration of 100 cm/s2. Find the amplitude and period of oscillation. (π = 3.142) (March 2018)

• Define an ideal simple pendulum. Show that the motion of a simple pendulum under certain conditions is simple harmonic. Obtain an of expression for its period. (July 2018)

• From differential equation of linear S.H.M. obtain an expression for acceleration, velocity and displacement of a particle performing S.H.M. (March 2019)

• Obtain an expression for potential energy of a particle performing S.H.M. What is the value of potential energy at (i) Mean position and (ii) Extreme position? (March 2019)

The length of the second's pendulum in a clock is increased to 4 times its initial length. Calculate the number of oscillations completed by the new pendulum in one minute. (March 2019)

A body of mass 1 kg is made to oscillate on a spring of force constant 16 N/m. Calculate
i. angular frequency
ii. frequency of vibrations. (March 2019)

Define epoch of S.H.M. State the factors on which the total energy of a particle performing S.H.M. depends. (July 2019)

A simple pendulum of length 1 m has a mass of 10 g and oscillates freely with amplitude of 5 cm. Calculate its potential energy at extreme position. (March 2020)

• At which position, the total energy of a particle executing linear S.H.M. is purely potential? (March 2020)

Define linear S.H.M. Obtain differential equation of linear S.H.M. (March 2020)


Comments